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The Java Collections Framework

• We will consider the Java Collections Framework as a 

good example of how to apply the principles of object-

oriented software engineering (see Lecture 1) to the 

design of classical data structures.



The Java Collections Framework

• A coupled set of classes and interfaces that implement 

commonly reusable collection data structures. 

• Designed and developed primarily by Joshua Bloch

(currently Chief Java Architect at Google).

http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Interface_(java)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Joshua_Bloch
http://en.wikipedia.org/wiki/Google


What is a Collection?

• An object that groups multiple elements into a single 

unit.

• Sometimes called a container.



What is a Collection Framework?

• A unified architecture for representing and manipulating 

collections. 

• Includes: 

– Interfaces: A hierarchy of ADTs. 

– Implementations

– Algorithms: The methods that perform useful computations, 

such as searching and sorting, on objects that implement 

collection interfaces. 

• These algorithms are polymorphic: that is, the same method can be 

used on many different implementations of the appropriate 

collection interface. 



History

• Apart from the Java Collections Framework, the best-

known examples of collections frameworks are the C++ 

Standard Template Library (STL) and Smalltalk's 

collection hierarchy. 



Benefits

• Reduces programming effort: By providing useful data structures 

and algorithms, the Collections Framework frees you to concentrate 

on the important parts of your program rather than on the low-level 

"plumbing" required to make it work. 

• Increases program speed and quality: Provides high-

performance, high-quality implementations of useful data structures 

and algorithms. 

• Allows interoperability among unrelated APIs: APIs can 

interoperate seamlessly, even though they were written 

independently. 

• Reduces effort to learn and to use new APIs

• Reduces effort to design new APIs

• Fosters software reuse: New data structures that conform to the 

standard collection interfaces are by nature reusable. 



Where is the Java Collections Framework?

• Package java.util.

• In this lecture we will survey the interfaces, abstract classes and 

classes for linear data structures provided by the Java Collections 

Framework.

• We will not cover all of the details (e.g., the exceptions that may be 

thrown).

• For additional details, please see

– Javadoc, provided with your java distribution.

– Comments and code in the specific java.util.*.java files, provided 

with your java distribution.

– The Collections Java tutorial, available at 

http://docs.oracle.com/javase/tutorial/collections/index.html

– Chan et al, The Java Class Libraries, Second Edition 
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Traversing Collections in Java

• There are two ways to traverse collections: 

– using Iterators. 

– with the (enhanced) for-each construct 



Iterators

• An Iterator is an object that enables you to traverse through a collection 

and to remove elements from the collection selectively, if desired. 

• You get an Iterator for a collection by calling the collection’s iterator 

method.

• Suppose collection is an instance of a Collection.  Then to print out 

each element on a separate line: 

Iterator<E> it = collection.iterator();

while (it.hasNext())

System.out.println(it.next());

• Note that next() does two things:

1. Returns the current element (initially the first element)

2. Steps to the next element and makes it the current element.

http://java.sun.com/javase/7/docs/api/java/util/Iterator.html


Iterators

Iterator interface:  

public interface Iterator<E> { 

boolean hasNext(); 

E next(); 

void remove(); //optional 

} 

• hasNext() returns true if the iteration has more elements

• next() returns the next element in the iteration.

– throws exception if iterator has already visited all elements.  

• remove() removes the last element that was returned by next. 

– remove may be called only once per call to next 

– otherwise throws an exception.

– Iterator.remove is the only safe way to modify a collection during iteration 



Implementing Iterators

• Could make a copy of the collection.

– Good: could make copy private – no other objects could change 

it from under you.

– Bad: construction is O(n).

• Could use the collection itself (the typical choice).

– Good: construction, hasNext and next are all O(1).

– Bad: if another object makes a structural change to the 

collection, the results are unspecified.



The Enhanced For-Each Statement

• Suppose collection is an instance of a Collection.  Then

for (Object o : collection) 

System.out.println(o); 

prints each element of the collection on a separate line.

• This code is just shorthand:  it compiles to use o.iterator().  



The Generality of Iterators

• Note that iterators are general in that they apply to any 

collection.

– Could represent a sequence, set or map.

– Could be implemented using arrays or linked lists.



ListIterators

• A ListIterator extends Iterator to treat the collection as a list, allowing 

– access to the integer position (index) of elements

– forward and backward traversal

– modification and insertion of elements.

• The current position is viewed as being either

– Before the first element

– Between two elements

– After the last element

Iterator

ListIterator



ListIterators

• ListIterators support the following methods:

– add(e):  inserts element e at current position (before implicit cursor)

– hasNext()

– hasPrevious()

– previous():  returns element before current position and steps backward

– next():  returns element after current position and steps forward

– nextIndex()

– previousIndex()

– set(e): replaces the element returned by the most recent next() or previous() call

– remove(): removes the element returned by the most recent next() or previous() call

Iterator

ListIterator
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Levels of Abstraction

• Recall that Java supports three levels of abstraction:

– Interface

• Java expression of an ADT

• Includes method declarations with arguments of specified types, but 

with empty bodies

– Abstract Class

• Implements only a subset of an interface.

• Cannot be used to instantiate an object.

– (Concrete) Classes

• May extend one or more abstract classes

• Must fully implement any interface it implements

• Can be used to instantiate objects.
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The Iterable Interface

• Allows an Iterator to be associated with an object.

• The iterator allows an existing data structure to be 

stepped through sequentially, using the following 

methods:

– hasNext() returns true if the iteration has more elements

– next() returns the next element in the iteration.

• throws exception if iterator has already visited all elements.  

– remove() removes the last element that was returned by next. 

• remove may be called only once per call to next 

• otherwise throws an exception.

• Iterator.remove is the only safe way to modify a collection 

during iteration 
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The Collection Interface

• Allows data to be modeled as a collection of objects.  In addition to 

the Iterator interface, provides interfaces for:

– Creating the data structure

• add(e)

• addAll(c)

– Querying the data structure

• size()

• isEmpty()

• contains(e)

• containsAll(c)

• toArray()

• equals(e)

– Modifying the data structure

• remove(e)

• removeAll(c)

• retainAll(c)

• clear()
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The Abstract Collection Class

• Skeletal implementation of the Collection interface.

• For unmodifiable collection, programmer still needs to implement:

– iterator (including hasNext and next methods)

– size

• For modifiable collection, need to also implement:

– remove method for iterator

– add
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The List Interface

• Extends the Collections interface to model the data as an ordered 

sequence of elements, indexed by a 0-based integer index 

(position).  

• Provides interface for creation of a ListIterator

• Also adds interfaces for:

– Creating the data structure

• add(e) – append element e to the list

• add(i, e) – insert element e at position i (and shift elements at i and above one to the right).

– Querying the data structure

• get(i) – return element currently stored at position i

• indexOf(e) – return index of first occurrence of specified element e

• lastIndexOf(e) – return index of last occurrence of specified element e

• subList(i1, i2) – return list of elements from index i1 to i2

– Modifying the data structure

• set(i, e) – replace element currently stored at index i with specified element e

• remove(e) – remove the first occurrence of the specified element from the list

• remove(i) – remove the element at position i
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The Abstract List Class

• Skeletal implementation of the List interface.

• For unmodifiable list, programmer needs to implement methods:

– get 

– size

• For modifiable list, need to implement

– set

• For variable-size modifiable list, need to implement

– add

– remove
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The ArrayList Class

• Random access data store implementation of the List interface

• Uses an array for storage.

• Supports automatic array-resizing

• Adds methods

– trimToSize() – Trims capacity to current size

– ensureCapacity(n) – Increases capacity to at least n 

– clone() – Create copy of list

– removeRange(i1, i2) – Remove elements at positions i1 to i2

– RangeCheck(i):  throws exception if i not in range

– writeObject(s): writes out list to output stream s

– readObject(s): reads in list from input stream s
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The Vector Class

• Similar to ArrayList.

• But all methods of Vector are synchronized.

– Uses an internal lock to prevent multiple threads from concurrently executing 

methods for the same vector object .

– Other threads trying to execute methods of the object are suspended until the 

current thread completes.

– Helps to prevent conflicts and inconsistencies in multi-threaded code

• Vector is a so-called legacy class:  no longer necessary for new 

applications, but still in widespread use in existing code.

• Synchronization can be achieved with ArrayLists and other classes 

of the Collections framework using synchronization wrappers (we 

will not cover this).
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The Stack Class

• Represents a last-in, first-out (LIFO) stack of objects.

• Adds 5 methods:

– push()

– pop()

– peek()

– empty()

– search(e):  return the 1-based position of where an object is on the stack.
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The Abstract Sequential List Class

• Skeletal implementation of the List interface.

• Assumes a sequential access data store (e.g., linked list)

• Programmer needs to implement methods

– listIterator()

– size()

• For unmodifiable list, programmer needs to implement list iterator’s methods:

– hasNext()

– next()

– hasPrevious()

– previous()

– nextIndex()

– previousIndex()

• For modifiable list, need to also implement list iterator’s

– set(e)

• For variable-size modifiable list, need to implement list iterator’s

– add(e)

– remove()
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The Queue Interface

• Designed for holding elements prior to processing

• Typically first-in first-out (FIFO)

• Defines a head position, which is the next element to be removed.

• Provides additional insertion, extraction and inspection operations.

• Extends the Collection interface to provide interfaces for:

– offer(e):  add e to queue if there is room (return false if not)

– poll(): return and remove head of queue (return null if empty)

– remove(): return and remove head of queue (throw exception if empty)

– peek():  return head of queue (return null if empty)

– element(): return head of queue (throw exception if empty)
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The LinkedList Class

• Implements the List and Queue interfaces.

• Uses a doubly-linked list data structure.

• Extends the List interface with additional methods:

– getFirst()

– getLast()

– removeFirst()

– removeLast()

– addFirst(e)

– addLast(e)

• These make it easier to use the LinkedList class to create 

stacks, queues and deques (double-ended queues).



The LinkedList Class

• LinkedList objects are not synchronized by default.

• However, the LinkedList iterator is fail-fast: if the list is structurally 

modified at any time after the iterator is created, in any way except 

through the Iterator's own remove or add methods, the iterator will 

throw a ConcurrentModificationException.

• This is detected at the first execution of one of the iterator’s methods 

after the modification. 

• In this way the iterator will hopefully fail quickly and cleanly, rather 

than risking arbitrary, non-deterministic behavior at an undetermined 

time in the future.
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The Abstract Queue Class

• Skeletal implementation of the Queue interface.

• Provides implementations for

– add(e)

– remove()

– element()

– clear()

– addAll(c)
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The Priority Queue Class

• Based on priority heap

• Elements are prioritized based either on

– natural order

– a comparator, passed to the constructor.

• Provides an iterator

• We will study this in detail when we get to heaps!
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Summary

• From this lecture you should understand:

– The purpose and advantages of the Java Collections Framework

– How interfaces, abstract classes and classes are used 

hierarchically to achieve some of the key goals of object-oriented 

software engineering.

– The purpose of iterators, and how to create and use them.

– How the Java Collections Framework can be used to develop 

code using general collections, lists, array lists, stacks and 

queues.



For More Details

• Javadoc, provided with your java distribution.

• Comments and code in the specific java.util.*.java files, 

provided with your java distribution.

• The Collections Java tutorial, available at 

http://docs.oracle.com/javase/tutorial/collections/index.html

• Chan et al, The Java Class Libraries, Second Edition 


